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VALVE-SPRING SURGE*

By Winy Marti

Gn account of the high-speed motion of an injection
valve there are set” up oscillations in the valve spring
and these impart A greater stress to the springs than would
be the case if their inertia were neglected.

Since, for reasons of space and weight-saving, valve
springs are more highly loaded than the other machine ele-
ments, it is essential to know the actual ma~imum stress
of the spring. This knowledge is obtained either by de-
termining the vibration strength of the springs after man-
ufacture or by measuring the actual spring stress as a
function of the speeds under which it is operated.

A knowledge of spring oscillation is also useful for
the following reason. As the valve is opened the moving
mass is accelerated by the pressure of the cam and again
decelerated by the spring, the deceleration being assisted
by the friction of the guide. When the valve closes the
mass is first accelerated by the spring and then deceler-
ated by the cam, and in this case the friction diminishes
the accelerating action of the s~ring force. As a result
of the spring oscillations the force of the spring is de-
creased for brief intervals so that there is set up a
knocking at the bearing roller at lower speeds than would
be the case if there were no such oscillati~ns.

.,

Under the condition of resonance the oscillating
spring contributes to the general noise, since the natural
frequencies of the springs commonly employed correspond to
the range of audible tones. When the distance between the
coils is small and the amplitude of the oscillations large
the windings may come in contact with each other and dam-
age the surface, for example, of polished springs, result-
ing in a lowered vibration strength of the spring if it is
made of alloyed steel.

____________________________________________________________
*llVentilfederschwingungen. “ Thesis submitted in partial

fulfillment of the requirements for the degree of
Engineer in Mechanical Engineering Aeronautics, Federal
Polytechnic Institute of Zurich, 1935, pp. 1-20.
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A knowledge of the mechanism of spring oscillation is
applicable to ether elastic vibrating columns. In the
fuel line of a Diesel injection system there occur, after
injection, pressure fluctuations similar to those in the
spring after the valve lift. The propagation of an elec-
trical impulse in a cable having capacity and self induc-
tion follows, as we know, the same laws and corresponds to
the same differential equation as the longitudinal waves
of an elastic column.

TESTS ON SPRING SURGE THAT HAVE ALREADY BEEN PUBLISHED

Probably the simplest and clearest method of render-
ing the motion of the spring coils visible is that given
by ‘W. Weibull (reference 1). He fastened a small rod run-
ning radiEl to the s~ring axis to each turn ?.nd projected
the shadows on a slit perpendicular to the rods. The
light rays thus cut out described on a rotating photo-
~raphic film the motion of each turn as a function of the
time.

Fiwure 1 shows whet happens when a weight strikes
upon the spring which is in a vertical position. The im-
pulse is propagated from coil to coil ‘~ith a constant
velocity and reflecte$ at the en.iisof the springs. After
the pressure wave has traveled several times up and down
the weight is again thrown up by the spring under tension
and the spring then continues to oscillate with its natural
frequency. Stroboscopic methods were employed by Swan,
Savage (reference 2), and von Lehr (reference 3). fne ar-

bitrary coil, usually the center one, is marked and cb-
served stroboscopically. The motion of the coil is con-
trolled by the cam and. the coil is illuminated for an ex-
tremely short interval in the same angular position. The
lift of the coil, Which appears at rest, may in this may
be read as a function of the angle and of the time. The
time-distance curve thus obtained is the resultant of
several rotations and m,ay easily contain errors - for ex-
ample, if the position of resonance is net maintained
.accur~.tely as p. result of small fluctuations in the speed
during the test.

Lehr describes a method mherety the center spring
coil having a small strip attached to it covers and un-
covers a slit p?.rallel to the spring axis and is photo-
graphed on a rot?.ting film. The time-distance curve of
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the turn then appears as’a line separating bright and
dark areas.. . .

AUTHORIS TESTS

Time-distance curves of moving machine parts may be
obtained. by the well-known method of using a bridge and
oscillograph. A preliminary test employing this method
ma,s made on a valve spring of a Diesel engine on a test
stand. To the center coil was soldered a spring steel
tongue which slid along a nickel-chromium wire (fig. 2).
The bridge current is proportional to the distance moved
by the coil, provided the variation in the resistance is
small compared to the resistance R. As may be seen %y
comparing an oscillogram (fig. 3) with those obtained lat-
er, the s~ring surge dies down very rapidly. This is due
to the damping action of the strong pressure between the
bridge wire and the sliding contact. A decrease in this
pressure produces an unsteady fluctuation of the contact
resistance and results in a deformation of the curves so
that they are hardly recognizable. For this reason reson-
ance phenomena could not be recorded although these ap-
peared when there was no contact friction. There were
nevertheless revealed speed ranges within which the ampli-
tudes were large and others vith smaller amplitudes.

In nrder to >e able to continue the tests in the lab-
oratory an apparatus was constructed of the form shown in
figure 4, consisting of shaft, cam, roller, and spring.
Two heavy pulleys at each end of the shaft acted as fly-
wheels to render the s-peed uniform.

The tension produced by the vibration is largest at
the spring ends. Experience has shown that spring fail-
ures occur mostly in the outermost coil unless there is
some flaw in the material at some other point. Consider-
ations of strength and acceleration forces make it advisa-
ble to investigate the stress at a spring end and not just
any arbitrary dei@ormation or velocity.

Measurement of the spring pressure with carbon plate
indicators failed on account of the hysteresis effect.
(The calibration curve for rising pressure does not agree
with that for falling pressure. )

The compression of the last turn is a measure of the
stress at the spring end but it appeared too difficult to
convert this compression into a mirror rotation or elec-
tric current.

IL
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The most promising method appeared to be that of re-
cording the change in inclination of the wire axis. To
the outside turn was soldered a small knob and on it was
fixed the small oscillograph mirror. The test apparatus
with the spring in horizontal position was then set up
near the oscillograph in such a manner that the small mir-
ror lay in the position of the measuring loop. The re-
flected light ray described @n the film drum the tension
of the spring end as a function of the time.

Figure 5 shows oscillograrns obtained by this method.
.Rescrnance is set up, as we know, when the natural fre-
quency (or an integral multiple thereof) coincides with
an integral multiple of the cam speed. For any interme-
diate speed the amplitude remains small. The critical
speeds lie so near each other, however, that it seems
practically hopeless to determine the resonance speeds in
advance to a sufficient degree of accuracy so as not to
have the s:peed of the machine coincide with any critical

speed.

It may nevertheless be seen from the escillograms
(fig. 5) that the increase in the dynamic tension is not
equally large “for each resonance condition and this justi-
fies the hope that it may be possible to avoid excessively
large dynamic stresses within certain speed ranges.

The test method just described likewise had to be
given up as not being sufficiently accurate. The testing
of the spring on a, spring scale showed that the relaticn
between the stress and the light becm displacement was not
linear, since the last turn lifts less and less as it is
compressed. There arise, tiorecver, other disturbing ef-
fects due to the oscill~,tion of the spring at right an-
gles to the spring axis, and the resulting deformations
are likewise recorded on the film and falsify thd record
(fig. 5, 18 to 20 oscillations per rotation).

The author had, meanwhile, for the purpose of gener-
?,1 investigations on the Diesel engines, constructed a sys-
tem of three quarts indicators whereby three different
pressures could be synchronized and. simultaneously record-
ed on a single oscillo.gra,m.

The first preliminary tests with this apparatus of
Kluge and Linckh (reference 4.) showed the promising pcssi-
tilities of application of radio amplifiers to the field
of pressure and force recording.
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When pressure is annlied to a crystal cut in a spe-
cial way, there arise o~-each surface under pressure
‘electrical charges which charge ~ rotating condenser K
(fig. 6) to ~ voltage which is proportional to the pres-
sure. An electrostatically operating amplifier must now
convert this voltage into a proportional current without
thereby drawing charge from the condenser. The first tube
of the amplifier therefore consists of an electrometer
with amber insulated leads to the grid. (The rotating
condenser of 1$000 centimeters capacity was likewise insu-
lated against the ground by means of amber.) The tube op-
erates with an anode voltage of only six volts as this
voltage lies below the ionization voltage of the residual
gas in the tube so that no grid currents are set up as a
result of ionization currents. A separately heated output
tube is electrostatically coupled to the electrometer tube
(fig. 6).

In order that the lead from the quartz to the grid
may not act as an antenna and assume too large and uncon-
trollable a capacity with respect to earth and thus re-
sult in high insulation losses, it must be kept very short,
i.e., the amplifier must be set up near the crystal. A
bare copper wire about 0.5 meter c~nnects the center elec-
trode with the amplifier. It a~pea.red. that a static .
shielding screen was unnecessary and night even prove harm-
ful since, as p. result of p.ny fluctuations of the conduc-
tor with respect to the screen, c?.gacity and voltage fluc-
tuations may be set up and these may falsify the pressure
Gscill?.tions on the oscillogram.

The second ~.mplifier tube is somewhat sensitive to
vibrations , especially if a tube is chosen that can give a
linear characteristic with a *5 mA current. The metal
housing of the amplifier Was therefore supported on weak
springs and in this may the vibrations could be entirely
kept down.

In pre.ctical operation larger distances between am-
plifier and oscillo~;raph are unavoidable. In order to be
able to use the amplifier simultaneously for observation
on a ground-glass plate, a central switch desk was lowered
on the oscillograph table and was connected with plug
sockets and a 9-wire cable to the three amplifiers. In
the diagrams (fig. 6) are shown the three amplifiers above
and the switch desk below. The vertical lines to the
right represent the 9-I~ire connecting cable to which one
to three amplifiers cr.n be connected.
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Before any measurements are made the amplifier is ad-
justed so as to give linear readings. From the switch desk
are drawn together all the relays R which connect all the
grids with the potentiometer PI . With the potentiometer

e~ual voltage intervals can be measured and thus in a few
seconis the voltage sensitivity and linearity may be
checked. If ~~ecessary, the closed circuit current compen-
sator G may ke so adjusted the.t the linear portion of
the e,m~lifier characteristic includes the entire oscillo-
grarn ~~idth of 120 millimeters.

If the relays are r.gain disconnected the light beam
indicator remains for some time in the same position; i.e.,
the ccndenser remains charged for some t~me with the po-
tential it finally received. Due to poor insulation, it
discharges within a few minutes. Periodic pressure curves
are therefore shifted in the directisn of the oscillogram
width until the mean nressure with respect to time coin-
cides with the zero point of the condenser. The zero
point cf the oscillogram must be adjusted according to the
form of the curve. I’or this purpnse the potential of all
the cathodes may be varied. ky means cf the potentiometer
Pa w’nich, however, shifts the zero points of all three
curves sirnultane~usly. To adjust the zero point of any one
curve it is necessary to ‘connect an adjustable voltage
ahead of the grid between condenser and ground.

Before the oscillogram loop is c~nnected in, the pro-
tectiv~ resistances S are disconnected in steps so that
the measuring coil of the oscillogram may not he overload-
ed by an inaccurately compensated compensating current.

The source of current for the anode was a battery of
storage cells supplying 150 volts. It is also possible to
use a, network connection provided the current is suffi-
ciently well smoothed out by filters,’ If more current is
suddenly drawn from the network the current cannet immedi-
ately adjust itself to a. steady tend.ition due to the chok-
ing action of the filter. The current must therefcre be
stabilized _Ey means of a sufficiently la,rge condenser.
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THEORY OF P?AVXS IN VALVE SPRINGS

In the derivations given below, the following nota-
tionpwill be used:

7

d

J,

l?,

6,

P3

t,

IJJ,

k,

t,

Y*

x,

Y,

~,

G,

v,

T*

is the mean diameter of turn

polar moment of inertia

cross-sectional area of spring wire

diameter of round spring wire

number of active spring turns

length of spring uncoiled.

reduced mass of spring per centimeter wire
length =,

(
F+4zJZj:~F:

damping constant per centimeter of wire length

time variakle

lift of a spring coil at distance x

distance from the fixed end of the. spring

s~pecific weight of spring

acceleration of gravity

torsional modulus of spring steel

velocity of spring coil

tension of spring

To, spring t~.n sion at lift ho

M, torsional moment corresponding to 7

h, valve lift as function of cam angle

h ~, maximum valve lift
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T~, time interval for a disturtiance to run up and
down the spring

Ws, speed of propagation of an elastic disturbance
a,lcng the wire axis

UJ, angular velocity of cam

v, angular setting of cam

wo, natural angular velocity of spring

The well-known differential equation for the elastic dis-
turbance of a spiral spring reads (reference 5):

The velccity with which an elastic iiistur%ance without
damping is propagated along the spring wire is:

(1)

(2)

F‘g
It may be notsd t’hat the value of –V– is identical

with the velocity of propagation of torsicnal disturbances
in smooth rods.

Let a syring that extends to infinity in one direc-
tion have the other end moved according to a definite law
of velocity. Velocity waves will ‘oe propagated along the
smring axis with the disturbance velccity. Together with
t~le velocity wave ~.nd Unsenarably connected with it, there

is propagated a corres~g”onding stress distribution (tor-
sianal stress). i

The following application of the principle of conser-
vation of momentum shows how the velocity .ad stress de-
pend on each other: In the very short interval dt, the
velocity at the starting end of the spring is changed by
amount Av, for tvhich a change in force AP is required.
This change in velocity has moved. forward in the time dt
the distance Ws dt. By the principle of conservation of
momentum,

— ,—. --— ,. . , ,.,.,.,,—.-.
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APdt=Uw~dtAv

9

Substituting the values for v and w~ there is obtained

an expression for the dynamical torsional moment

AMdyn
= mAv

(3)

The dynamical stress becomes for all cross sections

(3a)

where the nondimensional numerical coefficient @ depends
only on the form of the cross-sectional area.

For steel springs with round wire section

AT = 360 ~V approximately (kg/cma; m/s)

In a gun spring, for example, the initial stress de-
pends not on the spring dimensions but on the initial ve-
locity at one end “of the rebounding gun barrel, on the
form of cross-sectional area of the wire, and on the mate-
rial.

REFLECTION @F THE WAVES AT ENDS 0)? VALVE SPRING

For a spring of finite length, proportionality like-
wise oktains between the disturbing velocity change and
the stress wave. The total stress at any point of the
spring consists, however, of the superposition of all the
stress waves traveling up and back.

The reflection of a disturbance, consisting of the
velocity and stress waves, at a fixed wall occurs in the
follewing manner (fig. 7):

The condition of a fixed wall requires that the veloc-
ity of the spring elements adjacent to the wall should be
zero at every instant. This condition may be satisfied by
superposing a moving symmetrical disturbance, as would be
obtained by mirrqr reflection, on the original disturbance.

-.

.—
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(In fig. 7 the velocity waves are drawn symmetrical about a
point (central. symmetry), since the velocities when consid-
ered! as scalars have reversed signs. The velocity vectors
are naturally also symmetrical about a line. )

On account of the central symmetry the velocity van-
ishes at the wall at each instant. The wave on the left
travels to the right and is not considered for any further
investigation. The wave on the right travels toward the
left, is similarly reflected a,t the disturbing end. of the
spring, and so travels up and down several times.

The same phenomenon mill occur when the other end of
the spring is simultaneously disturbed. Both disturbances
would give rise to symmetrical waves of stress ml~ich would
he dcubled at the wall d.

Figure 7 shows the wave dravn shorter than the length
of the spring. Only two waves are therefore superposed.
Actually the disturbance producing the waves is very S1OW
compared to the velocity of propagation of the disturbance.
The valve opening time is very large compared with the pe-
riod To that it takes a wave to run up and down the
spring. This fact does not in any may affect the process
of reflection but m,akcs the superposition somewhat more
complicated.

The w~.ve reflected at the fixed T?.11 will now again
be reflected at tha disturbed spring end and after an in-
terval again c.rrive at the fixed wall. At the mall the
doubled stress ?VS.VCS s.dd up after the interval To, the

wave t~ice rcflect~d after an interval 2T0 , the wave
three times reflected after an interval 3T0 , etc.

THE DYNAT,fICAL STRESS OF THE VALVE SPRING FOR

A SINGLE LIFT 03’ THE VALVE

From the discussion given above, the dynamic stress
at ‘~he fixed end of the spring is the resultant of the
stress waves reaching that end after equal intervals (after
each period To), the stress doubling at each reflection.
If me denote the disturbing velo.city. function by Vt , then
the total torsional moment at the fixed wall for a single
valve lift and for springs of any cross section is accord-
ing to equation (3):
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,

~dyn = n“ (2vt + 2vt-To + 2~t-~To + 2vt_3To ..*., )
,,

In order to obtain the simplest possible rela,tionsj
this equation will be converted into nondimensional form.
Since the cam angle qY equals (,ut, the foregoing equation
may be written with indices cp, cp - WTO, @ - 2ulTo,

W - 3wT0, v - 4UJT0, etc.

Let the movable end of the spring move with lift h,
whic”h is a function of cp. The velocity is then

and the above equa,tion is transformed into

‘d,n =m“ [2G), +2 (%O,..,O+
+2 (g~)

ddv-2wTo
. . . . . . 1 (4)

J

For a S1OW compression of the spring the torsional
moment of the spring according to the theory of strength
of materials is

(5)

The difference in torsional stress between lower and upper
cam positions is therefore:

(6)

The period of a vibration, which is also the time required
for a wave to run along the spring up and back, is

and the angular frequency of the fundamental vibration is

(7)

By c~mbining equations (6) and (7)
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(8)

Dividing equat”ion (4) by equation (8)

+ 2 WYWTO+2W&o+ ●“””]
The ratio U)()/w = z, which is the number of natural vibra-

tions per cam revolution, will be taken as a measure of
the time. We furthermore set

so that we obtain:

The stress at the moving end of the spring ‘will then be

The first wave does not enter doubled into equation (10)
since it has arisen from a velocity disturbance and not
by reflection.

Both curves representing equations (9) and (10) dif-
fer frcm equation (5) only by the superposition of the
additional dynamic stress. After a time equal to the in-
terval of lift, functions 9 and 10 become periodic.

From the relations derived above the result follows
that the magnitude of natural oscillation for a single
lift of the valve depends only on the cam contour and the
natural frequency of the spring. The spring material and
dimensions affect only the natural spring frequency. The
computation of the dynamical stress is reduced to the addi-
tion of dh//d~ curves shifted from each other by an equal
amount 211/z ● Magg in 1912 derived a similar though not
-nondimensional formula.
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MEASUREMENT OF THE dh/ d~ CURVE OF THE CAM TESTED

It is not advisable to o%tain the dh/ dv curve by

graphical differentiation of a measured lift curve since,
as we know, the method of graphical differentiation is very
inaccurate. The velocity curve, it is true, is generally
known from the cam computations from which the workshop
“drawing has been made, hut due to faults in workmanship
there are errors in using the cam pattern that may not be
neglected.. It was therefore attempted to carry outi the
differentiation experj.mentally on the test machine and the
attempt proved successful.

To one of the flywheels (fig. 4) of 370 millimeters
diameter, a strip of Ga?er divided into millimeter divi-
sions was glued on in the directioii of the perimeter, and
a permanent horseshoe magnet was mounted on it. A preci-
sion d.lal gage was fixed. on the sta,nd so that on turning
the flywheel “feele~’ of the dial gage was moved by the mag-
net. The center of the ’’fee].e?’was at a distance of 220
millimeters from the axis .of rotation. The flywheel was
now turned several times accurately ~2.50 mm ,= &O@650

(5 dial gage revolutions). With e. second instrument the
change in lift Ah which varied between O and 0.80 milli-
meter vas determined. The measuring was repe~ted after
the magnet was shifted each time 5 mm = 1.55 along the
millimeter paper. The quotients Ah/Acp could be repre-
sented without any scattering by a smooth curve a.s a func-
tion of cp (fig. 8). The accuracy is equal to that of the
measurement of ~he change in lift since the change in the
angle of A0.65° corres~onded to ~250 graduation marks, so
that the error for &p” could be neglected in comparison
with the errors for Ah.

The positive and negative areas of the dh/ dqo curve
deviated by only about 2 percent and gave the value of the
maximum lift ta,king the scale of the figure into account.
An attempt was next made to approximate the velocity curve
(shown dotted in fig. 9) by ~, triangular-shaped curve
(fig. 9). The superposition of the triangles in accord-
ance with equation (9) yielded, a “curve with sharp angles
different from the corresponding oseillograms to be dis-
cussed later. If, however, the accurate curve is used,
there is obtained the dotted stress curve (c in figs 9)
which is appreciably different.
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SIMULTANEOUS RECORDING OF THE STRESS AT

BOTH ENDS Cl? THE SPRING

A ~air ‘of quartz crystals was connected at each end Of
the spring. (In piezo-electric measurements two-quartz
cl”yst2.ls are used, .in gener?.1 , so as to make the insula-
tion of only one electrode necessary (fig. 10)). On one
side of the spring the force was transmitted to the crystal
through a guided coupling, since rather long springs would
otherwise easily buckle. A similar guide was also provided
at the moving end. The weight of the latter guide, h@w-
ever , necessitated its acceleration so that the accelerat-
ing force was superposed on the spring force and for this
reason the guide was dispensed with.

In order to test the Magg theory for the oscillations
of a spring during a single lift of the valve, the stress-

es at both ends of the spring were ccmputed according to
equations (9) and (10) for z = 20 oscillations per rota-
tion, and the same curves were cbtained with the oscillo-
graph (figs. 11 and 12).

The cscillogram was obtained for a single lift by
damping the resonance vibration of the spring through hand
contact. The first lift after the spring is released be-
haves, as is evident from figure 12, as a single lift=

The wave character of the oscillations is clearly
brought out by the computed curves together with the cor-
responding oscillograms. The initial rise in pressure is
linear like the velocity diagram and not parabclic like
the lift. The pressure rise at the stationary end occurs
after a delay of half a vibration period; i.e., after the

disturbance has traveled from the moving to the fixed end.
Figure 13 shows the stress at each end of the spring for
the condition of resonance. It may be seen that it is
chiefly the first harmcnic that is excited. The harmon-
ics at the ends are shifted in phase by 180°. The natur-
al vibrations of odd order 1, 3, 5, etc. , produce pressures
at both ends of the spring having a phase shift of 180°,
whereas those of even order are in phase. The proof for
this is found in the following test:

Instead of leading the static electrical charges of
each pair of quartz crystals to each amplifier, the charges
were superposed and conducted to only one amplifier”. The

I
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oscillogram thus obtained then represents the instantane-
OUS sum or arithmetical mean of the forces at the spring
ends and the even orders therefore disappear from the cs-
cillogram. Figure 14 shows, for example, such a recor~
for z = 19. Actually, the38 vibrations per rotation re-
corded were of the second order. Immediately thereafter,
the pressure curve, at the stationary end of- the spring was
taken for comparison on the same figure.

If the poles of one of the crystal pairs’ are intef-
ch~.nged and the charges at both ends ‘of.the spring-s addedi
the oscillogram will show the difference in spring forces.
The difference includes, however, only the odd orders.
The stress during the lift is no lcnger shown on the os-
cillogram (fig. 15). tnly the decreasing vibration of the
first order is seen and this is built up again during the
lift interval.

SPRING OSCILLAT’IPN DURING A SINGLE LIFT

AS A FUNCTION OF THE SFEED

In order to test the above theory of waves propagated
in springs, the dynamical stress of the spring was comput-
ed for. z = 12 to 23 os~illaticns per rotation~ Sinc~
one oscillation within this range lasts from 15 to 30 ,
the velocity curves must be added 2° apart in order to at-
tain sufficient accuracy. The shifts (36@0/z), that is,
the amounts by which the velocity curves are shifted from
each other and must be added are given in the following
table:

oscillations’
–—–––y––-–s Z=12
rotation
.—

7

Degree
shift,
exact 30

=

Degree
shift,
approx-
imate 30

—-

+

13 14

27.7 25.7

I

—r15 16

E

24 22.5

24 22.5
~

17 18

21.2 20

21.0 20

19 20 21

18.9 18 17..’2

19 18 17.0

16.4 15.7

16.5 15.$!
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In order to simplify the computation, the accurate
values of the shifts were rounded off to integral or half-
integral values. The ordinates of the velocity curve which
was drawn to large scale were then tabulated for each half
degree. Table I, page 17, shows, for example, the compu-
tation procedure for Z=20 oscillations -per rotation.
The column headed (dh/d@9 repeats itself in the remain-

ing columns each time with a shift of 18°. In the column
headed X dh/d.c? the previous columns were added, taking

into account the correct sign and finally, in the last
column, they were multiplied by 180°/hoz X 2 by which

the values appeared in nondimensional form ~dyn/To.

It may be seen from the table that after the first
lift an oscillation between T~yn/To = 0.139 and -0.116

remains behind. Actually this amounts to ~0’.l25. The de-
viation was caused by tb.e inequality in the vel~city areas
mentioned above. In the diagrams later given, the error
was corrected. each time.

For practical purposes the foregcing computation need
only partly be carried. through. To compute the spring os-
cillations, a knowledge of a comnlete oscillation period
at the lower position is reauired.

The com-p,~ted curves for z = 12 to 23 are shown in
figure 17. For greater clearness the scales were omitted
since the distance between the center line” of the top and
bottom stops always corresponds to TdYn/To = 1.

The same diagrams were obtained with the oscillograph
and are shown together in figure 16. In order that the
oscillograms may correspond to a single lift rescnance was
again set up as described above; the oscillation was damped
and the swinging recorded. The first lift after the damp-
ing is removed corresponds to a single lift. Computations
and tests were carried out for the stationary end of the
sFring, an d they agree to a sufficient degree of accuracy.*
The oscillograms confirm the method of Magg.

.——————————————————————_———————___——————————.————————————————

*Since the damping could not be removed suddenly and often
not accurately enough between two lifts, the jags on the
oscillograms are somewhat smaller.

— ■■ �✌✍ ✌✌✌l.-m.m,



N. A. C.A. Technical Memorandum No. 818 17
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COMPUTATION OF AMPLITUDE OF OSCILLATION FOR

A SINGLE LIFT BY HARMONIC ANALYSIS

. .

‘The velocity may be represented by the following
Fourier series:

a.1 sin Q + aa sin 2cp + as sin 3cp . ....,
&l=
d~ { + bl coscp+b~ cos2q+b3 c@s3cp ......

The method of computation indicated. by equations (9)
and (10) may be applied to each harmonic separately since
the partial results may be superposed for each harmonic.

The superposition of the first sine term according to
equation (9), namely:

al sin cp + al
‘in (~ -%)+ al ‘in (w -2 ‘~)+

+ ..oo. .al
(

sin V - [z - 1] 2;
)

becomes zero as one may easily convince oneself hy drawing
a star-shaped vecter diagram. The z vectors form angles
of 2Tr/z with each other and balance out. The same holds
for the first cosine term.

The vectors aa ~x2nand ba form angles of z and

their vector sum lii<ewise vanishes.

It will be found, finally, that the superposition of
the harmonics lto”z -l; z+ 1 to 22 - 1; 22 + 1 to
32 - 1, etc., cancel out and only the harmonics z, 22, 32,
42, etc. , add up to give the superposition sum, namely:

zaz sin 2C9 i- Zaaz sin 2zCp + za3z sin 7zCp + . . . -i-

+ zbz COS 2P + zbaz Cos 2zrp + zlJ3z Cos 3Z?J + .0.

Substituting the above in equation (9), we obtain the rela-
tion:

‘dyn

{

az sin ZV + aaz sin 2zCp + a3z sin 3%9 ...

–~– ‘ ::
+I)z Cos Zq + b2z Cos 2zcp + b=z Cos 3zcp ● ..

(11)
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*

Equation (11) expresses the condition that the natural os-
cillations of .tbe spring are in resonance with the harmon-
ics of the disturbing velocities and the coefficient of
the indices denotes the number of oscillationloops. The
amplitude of the forced oscillation is proportional to the
exciting harmonic of the dh/ dcp curve.

In order to compare equation (11) with the previous
results, the velocity curve of the test cam was developed
into a I’ourier series accordingto the method of Runge and
with the aid of 72 ordinates. ‘From the results of the ex-
ample (fig., 9.), it follows that a smaller number of ordi-
nates would not be advisable. In the analysis, however,
the higher ordinates may be neglected and the forced os-
cillation after a single lift “assumed to be a sine wave
to a, first approximation.

The agreement between the IIoscillation spectrum” “ob-
tained by each method is satisfactory (fig. 18). The ad-
dition of z curves shifted with respect to -each other by
3600/z leads to quicker results, however, than the har-
monic analysis.

EFFECT OF CAM PROFILE

From equation (9), it follows that the contour of the
cam determines the magnitude of the oscillation’ ampli-
tudes. An example of a simplified velocity curve shows
what points must be considered in order to reduce to possi-
bilities of spring sur~ing. Interesting information is ob-
tained when there is first investigated the result% of a
single lift by the cam, (dynamic compression of an elastic
column ). For this investigation two velocity curves will
be employed - one consisting of an isosceles triangle, and
one of a half-sine wave. Instead. of z oscillations per
rotation, the rele.tion c = T !/T. will be introduced,

where To denotes the natural period of the oscillation
of the first order, and TI the interval of lift equal
to the base of the triangle or of the sine half-wa,ve. At
the upper stop the spring remains in’an oscillating”con-
dition. The maximum amplitudes ATmax are expressed as

a fraction of To which is the stress corresponding to
the maximum lift.

For the triangular velocity curve the peaks of the
stresses are
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A-r “~max———. - = _
70 ( ) “

0.5+ m-21 +2~3”* “m-l-— ——— ——— ———.—
c

(12)

where for c=oto2, 2 to 4, 4 to 6, “6 to 8, etc.

m= o 1 2 3

For the sine h~.lf-wave within short ranges, the following
formulas hold:

(13)

for c =,0 to 1.5

1.5 to 2.5

2.5 to ?.5

3.5 to 4.5

4’.5 to 5.5

Both formulas are graphically given in figure 19 and were. —
obtained in the foll~wi.ng way: The curves were graphic-
ally superposed in accordance with equation (g). This
representation served only as an approximate indication
and for greater accuracy the addition was performed analyt-
ically. A special formula was thus found for each region
between the tangent discontinuities in figure 19. The for-
mulas fcr all the subdivisions arranged in series showed a
certain regularity and from these, formulas (13) and (14)
were derived,.

There are, accordingly, certain ratios for T ~/T.
for which no - or only slight - oscillations are brought’
about by the compression (zero point of the first kind).
If the upper portion of the time-velocity curve of the
spring end as it moves up, is s,ymmetricz.1 with respect to
the center of the lift, and if the up and down motions,are
symmetrical , then the following characteristics appear:
The form and amplitude of the oscillation are congruent
for the Up and down travel and differ by a phase shift
which depends on the time interval T 1’ between up and
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.d.own travel. ‘The.oscillations of the two halves of the
curve either add up or cancel eac?h other according to the
phase shift (zero point of the second kind). In order to
illustrate this behavior, a few oscillation diagrams are
shown on figure 20 for the triangular velocity curves with

Tf/To = 4 and 2,Tll = 1.5 T!. For z = 26.2 and 13.1 or
no oscillations are set up at the upper travel and there-
fore also none at the lower. For z = 21.8 and z = 17.5
there are some oscillations after the up travel but these
disappear during the down travel. This case alvvays occurs
when T II is an inte<ral multiple of the natural vibration
period To.

The greatest amplitude within the range investigated
occurs at Z = 19.6 where the phase difference is such
that the amplitude is doubled. Tne triangular velocity
curve investi~ated coincides approximately with the curve
of figure 8. Since the latter is not accurately triangu-
lar, a condition of complete abseilce of oscillation could
not be attained at z = 13.1, 17.5, and 21.8.

It would seem natural to design a ce,m producing no os-
cillations ly combining, by harmonic analysis, the first
12 harmonics. This cam would produce absolutely no vibra-
tions for z > 12. The straight lines of the upper and
lower part of the cam rould, homevcr, according to this
synthesis have to be replaced by a wave form of contour.
A more promising lilethod would. be to use a ra.r.ge of z giv-
ing few oscillations; for exa,mple, z = 21.8 to 28.4 (com-
bination of a. zero point of the first kind vith two zero
points of the second kind ). It silould be noted also that
the oscillat~on amplitudes for a. sine half-wa,ve are small-
er th,an those for a tri~.ngular wave.

The same zero points as in figure 19 appear when a
spring withcut mass to which a point mass is attached at
the center is caused to vibrate. We are therefore justi-
fied in the assumption that a long spring with a guiding
piston in the center vrould show the same zero points as a
smring ,:lit]louta concentrated mass if the natural fre-

q;ency f is computed according to the llunkerley formula:

(14)

fm is the natural frequency of the concentrated mass
attached to a spring assumed without mass.

ff is the natural frequency of spring without the
concentrated mass.
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THE SETTING UP’01’ RIISONANCl!

If a mass that is elastically supported is suddenly
acted on by a sine varying force having the same natural
frequency as the mass, the latter will he set vibrating in
resonance and the amplitude will continually increase un-
til after a certain time a steady state is reached. A
spring behaves in the same way. When the shaft speed is a
multiple of the natural oscillation period there would be,
if t~ere were no damping, an equal increment in the oscil-
lation amplitude for each lift. Due to internal friction
in the material and air friction the amplitude between the
lifts decreases. A steady state is reached when the loss
per rotation due to damping is equal to the amplitude for
a single lift.

The setting up of the resonance vibrations may be
mathematically considered in the following may:

The amplitude of the oscillation, as mill later be
shown experimentally, decreases according to an exponen-
tial law, the ratio of two successive amplitudes being
constant

An+l ~.———-. *
An

Aft,er one cam revolution, i.e. , after z oscilla-
tions the amplitude ratio becomes

‘n+z . ~z———
An

The damped harmonic oscillation may be represented by
a vector whose end describes a logarithmic spiral. In the
case of resonance the vector, during one revolution of the
cam, rotates exactly z times for every 360°. If the os-
cillation amplitude for a single lift is A (measured in
nondimensional units ‘dyn/’o ) this is superposed on the

reduced amplitude of the previous lift A az. The previ-

ous lifts contribute the amounts A a~z,A a3z, A a4z, etc. ,
and their sum amounts to

A
A (1+0.2 +aaz + asz ....) .~–—–––– = AR (15)

- a=

To obtain the amplitude of the final resonance vibra-

... . .. . .........! . . . ..— - .-—-
——
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tion the amplitude for a single stroke A must be multi-
plied by the resonance factor R = I/l-az.

Figure 21 shows the “resonance factor plotted for
z = 5 to 50 and An/An+l = 1.005 to 1.10. The chart is

sufficient for all practical purposes.

Between two resonance positions - i.e., for z =
a + 0.5 (a is an integer) the phase difference of two
superposed vectors is not 360° as above but (a + 0.5) 360°.
Each vector therefore acts in opposition to the previous
one and the Ilintermediate resonance factorlJ becomes:

A (1 - az + ct2z - a3z + CL4Z. ...) =i+-;z
1 > –_:_–– > ().5

l+az

In figure 22 the spring vibration was computed for
% = 19. The spaces in between stand for the lift which
for simplicity was not indicated. After each stroke the
oscillation receives the constant increment A until the
loss by damping becomes equal to A and the steady state
is reached.

For z = a + 0.5, if there were no damping, the SUC-
cessive rotations would alternately give amplitudes of 2A
and zero. On account of the damping, this does not occur
but instead the condition shown on figure 22 for Z = 18.5.
According to the amount of the damping, a value between A
and A/2 is reached in the steady state. The same applies
to the building up of the oscillations for z = a + 2/3;
for examgle, z = 18-2/3. Figure 22 should be compared
with the corresponding oscillograms, figure 23. Figure 24 .,
shows the oscillograms for the resonance positions for
z = 12 to 23 and was obtained in the same manner as fig-
ures 16 and 1’7.

If the theoretically computed amplitudes for a sin-
gle lift (fig. 18) are multiplied by the resonance factor
obtained from figure 21, there are ebta.ined the theoret-
ical resonance amplitudes of figure 25, which are in sat-
isfactory agreement with the oscillographed amplitudes of
figure 24. The damping required to compute the resonance
factor was determined by the experiments to be described
later.

..._ _ . — .— . — .— ——.-1
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FORCED SPRING @OSCILLATION WITH DAMPING

.

The general solution of the differential equation of
damped spring oscillation is, according to Hort (reference 6):

Y = e-bx [Cl sin (wt - ax) + Ca cos (wt - ax)] +

+ e+bx [C. sin (UJt + ax) + CA cos (u.Jt+ ax)]

At the fixed end of the spring, let x = O and “y = O,
whence we obtain:

cl = -C3 C2 = -C4

Let the end of the spring X=71 be moved by an excentric
in accordance with the law

(Y)x=z = r sin wt

This end condition gives two more equations for determin-
ing the constants. Carrying out the computation, we ob-
tain for the damped and forced spring oscillation, the
following equation:

bt] sin al cos(wt-ax)-bx< e-bZ-ebtlcos at sin(wt-ax )+ [e-b~3s_________________-– -~_ e. .——— ~[
r )

e-2bl - 2 cos 2 at + e2bT
.

@
ellx : e-bZ-ebZl cos at sin(wt+ax)+ [e~21~E_________––_– _____ J

bt] sin al cos(wt+ax)- ———
e-2bz - 2 cos 2 at i- e2bt

(16)

From this equation, by neglecting the damping coef-
ficient b, there is obtained the simple relation which
was first given by Fr~hlich:

Y
. r -n Wt sin ax—-—————————

sin at
(17)

The constants a and b may be determined by substi-
tuting a part integral into the partial differential” equa-
tion:

.,, ,.

(18)

II
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The changes in the spring force at the fixed end of the
spring are obtained by the partial differentiation of
equation (16):

()(P)x_o = c ::
X=o

Since we are interested only in the amplitude for the
case of rescnance we set in equation (16), as the condi-
tion for resonance, the approximation

UJ——

Ws

L 1-r

The result of both operations gives:

(P)
r(~c 2
——— ——————————

X=o = ‘dyn = ‘s eb~ - e-bZ ‘in ‘Wt + ‘)

The force for very slow motion is equ~.1 to

Po=~
L

c sin wt

and the ratio of amplit.udesis

[ ‘d.yn ~—‘dyn .
:; t –––:----

2’———— = _. ————.-——
Po ebt.e-bt = m ~-bl.e-llt

(19)
o

From equation (9,) we obtain for a. single ,sine motion of .
the spring end (z=l, h=r)

‘dyn
———- = 2Tl
To

The resonance factor (for 2=1)

is transformed by the means of the relation:

2111 .2_k_~_=~_T

21.Lw~ 2P .0
= In –A~-

An+l

into
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‘Ihe approximate equation then reads:

‘dyn ~m ~bt
———_ =
70

———-————— -
ehL - e-bt ‘“ (20)

and differs “~rom equation (19) only by the. factor ebt

which, fcr springs that are damped by the air resistance,
ma-y be set equal to 1 to within a few percent. The dif-
fere~c.e consists in the neglecting, of the damping during
the lift in the case of the ~pprOximate solution. .

~REE VIBRATION cl? THE SPRING

.The fundamental frequency for round steel springs is
computed by the formula

f = 358,000 ;:z.
.

where 6 is the diameter of wire in millimeters

d, mean t.iameter of coil in millimeters

Pi number of coils

To test the e.ccuracy of the calculation, the natural
frequencies of 10 springs of various dimensions were meas-

ured. The springs were set vibrating at their natural
frequencies and an oscillogram obtained for the steadily
diminishing vibrations. By comparing with the accurately
calibrated sine line of the time-recording instrument, the
following natural frequencies were established:

6 = 3 4 - 4.5 5.5 6 mm

d=36 38 38 “4Q 4C. mm

P=9 12.5 9.5 9 4 turns

f measured = 104 8$. 114 141 348/see.

f computed = 92 ?9 117 13+ Z35/~ec.
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6= 6 6 6.5 7 8 mm

d= 3842 44 43 40 mm

?? =1114 9 7, 15 turns

f measured = 135 87 152 198 119/ sec.

f c~mputed = 135 87 133 194 11995 /sec. ,

The deviations are such that any attempt to avoid
resonance by computation beforehand is unsuccessful. The

resonance speeds at a natural frequency of 6,000/minute,
for example, are:

~()(), 316, Zzs, 353, S7’5/minute

The critical speeds lie so near each other that resonance
is set up in the spring almost at any engine speed since
the free oscillations of identical springs deviate slight-
ly due to faults in manufacture. To avoid spring surges
it is therefore necessary to compute only the ranges -ivith-
in which there occurs little vibration if there is no pos-
sibility of obtaining sufficient damping.

THE DAMPING OF SPRING OSCILLATIONS

The general differential equation for damped spring
~ibration according to equation (1) includes the following

solution for the free oscillation:

.–L t u=m

Y=e 2~

[
E { Av sin wvt + Bv COS Wvt 1sin&x+

~=1 ..-

i- [ Cv sin Wvt + DU cos (J.)V t
1

Co.yx}
J

Iva

~o = —j——n

According to the mode of excitation, the dying-down
vibration may be considered as made up of standing waves
of various orders. The neriod changes very little with
the order. Example:

I
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Exampl e: W. : 1200; k/2W ~ 5
.,, .,. ‘,. . .....

ul~ = 0.9992 Ula; Wm = 1.000 tin
“,

After a completed fundamental vihrati~n, there is set
up. between the fundamental and a higher harmonic a phase
shift of at most 0.3°. The form of the curve therefore
ch~nges little during the dying down of the oscillation as
I’rohlich has shown in a simple experiment.

ThS form of the solution likewise shows, however, that
the amplitudes, and therefore also the stresses at the
spring end, decrease at the same rate in the same time in-
terval for all orders according to the amount contributed
hy the quctient k/2W. The reduced mass per centimeter of
wire p depends ~nly on the wire diameter and on the spe-
cific weight, and k is a functicn only of t“he wire diama-
ter. It is therefcre t? >e ex~ected that k/2~ is like-
wise dependent mnly en the wire diameter. ‘In order to test
this assumption, the damping of the oscillograms which were
used to determine the frequency was evaluated. In obtaini-
ng the damped curves the sensitivity of the indicator was
so adjusted that the vi-brations died. down in the same man-
ner as those @f spring” vibrations. The oscillegram ~f such
a vibration (fig. 26) reveals vibra.tien phencmena of a type
that could not he entirely “exFlained. It was at first
thought that they mere vibrations tr~nsverse to the s~ring
axis. Similar phentmeni were revealed to a slighter extent
in the case cf the other s~rings.

Figure 2’7 shcws the logarithms cf the amplitudes plot-
ted against the oscill~.tion number for several springs. A
straight line was d.ramn through the scattered points. (The
series of points forming a wave belcngs to the oscillogram
(fig.. 26). ) The inclination of the straight lines deter-
mines the v,alue of. the damping. The magnitude

plotted against the wire diameter (fig. 28) shows that the
former is affected by still another factor. It was par-
ticularly c.bserved that in the case of four springs having
equal wire diameter and approximately equal diameter of
coils, the damping was smaller the longer the spring. The
values frr the dam-ping were :

,.,
NC. o,f turns p = 4 11 14 17

‘}
8“=6; “d~40mm

k/2V = 7.2 3.3 1.45 0.58
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This effect can only be explained as due to the addi-
tional damping at the end of the spring, which ye may de-
note as the loss due to reflection, and which is composed
of the following components:

1. Friction of the spring wire at the spring end.

2. Friction between the spring coils during the
unwinding of the last coil.

7<. ● Dissipation of sound energy from the spring
end to the engine mass.

That reflection losses which cannot be taken into ac-
count by computation “occur, co’uld be confirmed by the fol-
lowing test:

The sane spring (8 = 6; d = 40; p = 17) under
identical conditions was successively supported on leather,
rubber , and “polyperite,’t and investig~ted for dam-ping.
The suppcrts consisted of rings of 5 millimeters thickness
and of the s~ne inside and outside diameter as the spring.
The rings uer.e inserted at each end between the spring and
the spring rasher. Figure 29 shows the oscillograms ob-
tained, the initial amplitude being the same in each case.

(The softer the support, the gre?,ter the loss by reflec-
tion.) Considerable damping may be attained by pressing
sheet-metal tongues against the spring, and the damping
could he adjusted by the amount Of pressure applied. In ~
figure 30a, for example, the vibration dies down corlplete-
ly during one rotation; 30-b .WaS obtained with the spring
in lubricating oil. With cylinder oil no oscillations
could be observed between z = 12 and 24. In order to ren-
der the magnitude of the damping visible, the spring was
slackened to such an extent that it began to knock against
the follower and started a vibration (fig. ZOC).

EFFECT @F INITIAL SPRING TENSION

In accordance with the theory developed, the ampli-
tudes of the resonance vibrations should be independent of
the initial spring tension. Swan and Savage found, hovever,
an increase in the amplitude with increasing initial ten-
sicn. The author has, therefore, for z = 20, varied the
initial tension from the knocking spring condition until
the condition where the coils almost touched (fig. 31). “
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The average play between the turns. at the upper cam posi-
tion was.chosen as parameter (fig. 31c). The natural vi-
brations increase somemh~t with increasing initial tension
in agreement with the results of Swan and Savage, since
the spring becomes somewhat shorter by the compression of
the spring end (fig. Xlb). .“

At a play of 3 millimeters the roller begins to knock
and for this reason the spring is damped somewhat. As the
play becomes smaller the amplitude ‘diminishes almost inap-
preciably while there is a. strcng decrease between 1 and
0.33 lmillimeter. The damping here increases because the
spring coils at the upper cam position touch each other.
A shrill sound is emitted whereas for .a smaller initial
tension a deeper hum corresponding to the natural frequen-
cy is heard.

EFFECT OF PLAY BETWEEN CAM AND FOLLOWER

Swan and Savage found a strong variation of the vi-
bration frequencies with the amount of follower play.
This is to be expected since the velocity of the spring
end varies with the amount of play of the roller. Swan
and Savage increased the amount of the play up to 1.5 mil-
limeters for a lift of about 9 millimeters. In the pres-
ent set-up the lift was 18 millimeters, and for a play of
the roller of 0.8 millimeter, the knocking was so strong
that no increase in the play Wp,S nossible. Within this
limiting value diagrams mere obtained for four different
plays for a single lift and compared with the theoretical
one (z =20). The comparison shows that the amplitude
for a play of ~ to ().8 millimeter bet~,veen cam and follower
does not appreciably vary (fig. Z2).

When the vibrations are few, for example, z = l’i’,
the conditions are different. In this case a certain ve-
locity is suddenly set up at the beginning and end of the
velocity curve where a small triangle is cut off, With
these triangles superposed according to equation (9),
there is obtained an oscillation diagram showing a large
number of sharp points (fig.. 33). There was no agreement,
however, with the oscillogram since the shocks due to the
strnkes were transmitted to the quartz crystal and cov-
ered up the details on the oscillogram.

—--—.—.——
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Assuming the camshaf”t to be, accelerated to a con-
stant. rotational velocity before the first lift stroke
begins,. then””at the start of the..first stroke the tensibn
increases linearly with the velocity of the spring end up
to the return of the disturbance which is reflected at
the fixed end of the spring. The succeeding Stresses are
the result of the superposition of all the disturbance
waves that run up and ‘~ack and oscillate about a mean line
that increases linearly withthe lift.

After the first lift there remains behind an oscilla-
tion which, for example, for 10 natural vibrations per. ro-
tation, contains the 10th, 20th, 30th, etc. harmonics of
the velocity curve. The amplitude of the vibration is
more easily computed with the aid of superposition than by
merns of harmonic analysis. The magnitude of the vibra-
tion excited after the first lift as a function of the
number of vibrations per turn indicates to the designer in
what range of engine speeds particularly large resonance
fre~uencies are set up. It is shown by means of ~.n exam-
ple how a sufficiently large range of rotational speeds
may be obtained within which little vibration occurs.

If the natural frequency is ?,n ex~.ct multiple of the
cam speed the vibration amplitude ‘will increase by the
same amount after each stroke. As a result of the damping,
however, a steady state will be reached as soon as the in-
crease per ‘rotation has become equal to the loss by damp-
ing. In a set of curves a resonance factor is given by
which the computed amplitude of the first lift must be
multiplied in order to obtain the final steady amplitw.de.
This resonance factor changes with the amount of the damp-
ing and with the number of oscillations per rotation.

The damping depends not only on the air resistance
and on the internal friction of tb.e material but. also on
the manner in which the spring is supported (loss by re-
flection). In lubricating oil the damping is so large
that the vibrations die down before the next lift stroke.

The phenomena described were confirmed by numerous
tests with cams and springs. Oscillograph measurements of
the forces at the spring ends show satisfactory agreement
with the curves computed beforehand.

The present wor’k was carried out at spare intervals
r.t the physics laboratory of the firm of Sulzer Brothers,
Winterthur. The firm kindly placed at my disposal the



N.A.C.A. Technical Memorandum No. 818 33

spring test apparatus, the Siemens Universal oscillo-
graphs, and the quartz indicators! for which I here take

.! the op”poh”tun”it-yto expr’es”s my’ “sincere than”ks.

I wish to thank Professor Eichelberg, who submitted
my report, for the kind interest he has shown throughout
my investigations.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.

REFERENCES

1.

2.

‘7...

4.

5.

6.

Weibull, ,,W.: De dynamiska agenskaperna bos spiral-
fj&drar, Stockholm, 1927.

Savage: The Surging of Engine-Valve Springs. Engi-
neering Research, special report No. 10. His
Majesty~s Stationery Office, London, 1928.

von Lehr: Z. d. V. D. 1., 1933, p. 458.

Kluge, J. , and Linckh, H. E.: Forschung auf dem Ge-
biete des Ingenieurwesens, May 19Z1, P. 15~.

I’r~hlich: Z. f. Mathematik u;d Physik, 1908, p. 379.
Magg. Verb. d.. Ver. Z. Beford. d. Gewerbefleisses,
1912, p. 480.

Hort: Die Differentialgleichungen des Ingenieurs,
1925, p. 585.

1. — —



lJ.A.C.A.Technical Memorandum Mo. 818 ~ics.l,i?,3,4,6

reflection
of 8 di8turbanco 8%
● q)rlngm

J’ignro5.- Resonanco froquencios of spring with
natur81 frequency of ?540/min.

Nos. tMO to 430 indicated,rotations Der minute.
Mos. 29 to 17.5 indicato number of f;ee
omcillationa per rotation.

h

?- 2.- sketch

ahowhg

recording of
~ibratioa ~ mans
of ● bridge.

~igure 3.- Motion
of the

center spring
coil obtained with
the ●pparatus of
fig.2.

—

?igure 4.- 3ection
through

the te-t apparatus,
● ✝ test 8prhg.

-’

t



I.A.C.A. Technical Momoramdm Io.

i,.. .

A 111111
-2
0
+4
+1o

+154

+le4

~igure 6.- Scheme of connections
of amplifier.

cnddeg.
a

o
0
0
0
0
0

. .
00 no 400 Boo 8001000 12(30 1400l~o”
ff+

?i&9

818 ~igs.“6,8,9.10011,1S

c

cmfdeg.

0,071
0,06 ,
0,06
0,04
0,03
0,02
0,01

0. 200 4130 600 600 1000 lm~ 140.

Q-)

Pigure 8.-
Velocity curve. v
?igure 11.- Coqmtod

stress curve.
a,

A

at the station- Y “’
qy end of the npring. ; ?b

b, at the moving end \n
of the spring. -

Ii

Oscilkgrq)ho
of stresses
of fig.11.
●, at station-
ary ●nd of
●prhg.
b, a% movi~

●nd of spring.

-e 9*” Stress variation for ●

●ingle lift for z=16.4.
a, Oarve to replace the exact

dh/dQcurve.
b, Stre8s computed from curvo ●.
c, Stromscomputed from exact ctirv..

?igure 10.- Section through spriq
with qinrts indicator.

●, rigid eupport.
b, quarts crystal.
c, eloctrodo to amplifier.

H&lo d~ movoable gui&.-



N.A.C.A. Technical Memorandum No. 81!3 Pigs. ?,18,19

Figure ‘7;-
=

:=

1-d
Reflection of disturbance at a fi-xeilvJall .

stress. c = moving eni .Jfspring.
velacity. d = rzf’lecti~g wall.

&l
’33

.&JJ-.pJ.10
.06 A’Tmax

.02 ‘~

z
14 18 22

AT max = ‘dyn - ‘~

31!1,+,.1111E=
z = :.2 116,201

14 18 22

ih/dql
,?i%mre 18.- !,mplitu’leof harmonics computei fr~m the—

‘iiaVr2 theory
I.Jf

.15

ATmax.10

‘o

.05

1

harm:)nic

h

\

and compare,l with the results
analysis.

ATmax

F
-@

.—------.
\

~,,-, ‘o 4:,
,It
tit
II,

nl~J/If.T,
;1
;;

f /“,, a
,.-.

‘,/’ J.,’, -.,/./ ‘. --- - - > --
“ ..- -----

1 2 3 4 56
T/T.

Figure 19.- Oscillations after spring is cornpressei,then
r~leascd. a = with triangular f>rm of velocity

curve. b = With vel~city curve in form of half sine wave.

.- _—— —



r-— -

M.A.C.A. Technical Memorandum 10. 818 J’lgs.13,14,15,16,17

?igura 14.- a,
Y
roof of the existent!.of.the second (Boro accurately

men harmonics by adding electrically the forces ●t the

spring ●rids.
b, comparison with the forces at the stationary
Both ourves were obtained one directly after the

?igure 13.- Spring stres8es at
both ends of the

●gring synchronously reaorded
(* = 20).
a, ●tat%onary end.
b, moving -ad.

~a .
*

1 b~a
-. . . . . . ..- ..-.

Figure 15.- Difforence of ●nd
press~s

●, butldi~up againof
‘dmmpedoacill~tione during
tho lift stroke.

b, dywdonnduringdonn
mtton of the cam

n

●nd (s = 19).
other.

J-I

J& z

&
m=
22

&

21

20

19

k

18

17

16

L

15

~ 14

u

-I*
?lWe 16.-
Oscillograul,
for 8inglo
ltft.

12



II #

I.A,C.A. Technioal Memorandum

Z = 28,4

27,3

26,2

25,1

24,0

22,9

21,8

20,7

19.6

18,6

17,5

16,4

15,3

14,2

13,1

12

10,9

// \\ “/TO “’/TO

HO, 818 ?Iglzl.20,21,22,23

Figure 20.- Computed stress
curves for ●

triangular velocity curve.

1.

2

3.

20

10

8

6

4

s

2

Jill I WI I I I

8 7 8 910 lb 20 !x902b41)4b50

Figuro 21.- Resonaace factor for
different number- of

oscillations per rotation, ..

Mguro 22.- Buildiag up spriag
vibrations ●fter

tho first lift (compntmd).

Eiguro 23.- Buildlag up spring
vibration,

obtained with oscillograph.
~OSo 1 and”2: z = 19

3: B = 18 2/3
4:s= 18 1/2

!----7 --y ---
,, :-----1 r----l .----, r----- r---~ r---, r---,.

~----j ~---j L----L--..J:-_.i L.-d _.J -.--jL__i l-.-i
Z_ 18’/,

~-y --- ~----1~-.-a:---- :..--~...-~-..~r---y.--7
:.---.J‘----L.-.-J .----’----~ ---~ i..-..~!-----L._.J L__J

z - WI*



R.A.C.A. qechnical Momoraad~~o. 818 ?i@. 24,2s,a6,S7028,ao

> /“’l..w._

*

Vw
2,0 h

19

18

17

16

15

1A

lLll_lz
Z=t213W lSlB17~l@’ZQ21Z723

~m
Z-1213 UM31E17W 1920212223

?i~ as. - BOaomao@ Uplitudom as Oompuw
and ao obtaiad with OsCi~I~@&

NW

~ 26.- Wing down of spr~ vib~tioa.

Piglm a4.- 5

,3 oscill~
for 4

,Q resoaaaco 3
coaditiona,

2

1

1,6

10
;

9,6

0s5 Q

1!
4
9“

●

+
+

+
+ ++

+

+



N.A.C.A. Technical Memorandum No. 818 ?igm. 29,31,32,33

a
Mgure 31.-

#r

+ Zcit

Effect bc 11111Illill Ill1111111111114

of initial 89.713,33,!,,,lll,,llll!!lll,l,\ll,,!tl ,Illllll!l

tension: 89.5 0,50
a, compar-
ison 89.5 0,68

IIlll,llltll$b,ttlt

m

b frequency=
m/8ec.
b, natural
epring
frequency

c per sec.
c, play
between
CO118
in m.

d

ngure 29.- Effect of yielding supports
on *pinge

a, without any support. c, leather ring.
b, polyperite ring. d, rubber ring.

~igu.re32.- Comparison of computed ●pring
forces with oscillogram with

pl~ of roller varying between O and
0.8nm. (s=20).

89,3

89,0

89,0

89,0

88,8

88,4

67,7

87,4

87

~igure 33.- Increase of
oacillatiion

amplitude due to play
of roller;
a, without play.
b,

W%=” PIW



..-.-—- _.

Illllllilllllll’umlmfllllllllllllllll
31176014374160— -—l

,


